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Singular Lagrangian for the Polaron 
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A Lagrangian which describes the electron-phonon interaction is proposed, 
starting from a simple model of interacting string and charged particle. The 
Lagrangian is singular, containing both bosonic variables (i.e., phonons) and 
fermionic ones (i.e., the electron). Symmetry Dirac brackets are used to obtain 
the BCS Hamiltonian. The addition of a total derivative of a scalar function to 
the Lagrangian density does not alter the quantization procedure. 

1. I N T R O D U C T I O N  

The e lec t ron-phonon system (polaron) is basic to the BCS theory of  
superconductivity for metals (Bardeen et al., 1957). This interaction has 
been expressed as a Hamil tonian starting from energy considerations 
(Haken,  1976, Chapter  I I I ;  Mitra et al., 1987). However,  it would be 
interesting to have a Lagrangian instead, since in this way we can obtain 
not only the Hamil tonian density, but the remaining conserved quantities. 
We have found a Lagrangian density by making an analogy with an ideal 
problem (Haken,  1976, p. 115) of  a string on which particles (i.e., electrons) 
may "walk,"  these particles being subject to gravity. (We ignore the effect 
of  gravity on the string.) Thus, the combined system represents the interac- 
tion of a string, given by a field q(x ,  t) ,  and a particle described by a second 
complex field ~b(x, t). The string represents a vibrating lattice of  phonons 
and the particle can be considered as the electron field. Thus, Haken 's  
Lagrangian can be used to describe a polaron (electron plus vibration lattice) 
if we make the appropriate  identification of the variables involved. 

However,  the Lagrangian density found happens to be linear in the 
time derivative of  the electronic field (i.e., - ~ ) .  As a result, the Lagrangian 
density is singular, in the sense of  Dirac, since we have constraints in phase 
space between the fields qb and their canonical momentum densities ~-.. 
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So the canonical variables are not independent of each other and the Dirac 
(1964) prescription has to be followed to arrive at a sound second quantiz- 
ation scheme. In passing, it is worthwhile mentioning that the Dirac formal- 
ism is valid not only for Lagrangians linear in the "velocities" (in our 
case, ~), as can be seen in the recent literature (Galvao and Lemos, 1988; 
Tapia, 1985). 

As said previously, our Lagrangian density has bosonic variables [the 
field q ( x ,  t)] and fermionic variables (the fields ~b, q~*). The presence of 
tp, qJ*, which satisfy a Fermi-Dirac type of statistics, forces us to quantize 
with the help of the symmetric Dirac bracket {., �9 }* or, simply, the "plus" 
Dirac bracket (Droz-Vicent, 1966; Franke and K~ilnay, 1970; K~ilnay and 
Ruggeri, 1972; K~ilnay, 1973) instead of the "minus" Dirac bracket {., �9 }_* 
(Mukunda and Sudarshan, 1968). The calculation produces the right results 
in second quantization. 

The information contained in the Lagrangian density is richer than 
that of the Hamiltonian. Along these lines, we have calculated the conserved 
quantities, evaluating the stress-energy tensor and the angular momentum 
(Goldstein, 1981, Chapter 12) of the system. 

The remainder of this paper is organized as follows. Section 2 states 
the problem through the writing out of the electron-phonon Lagrangian. 
Section 3 concentrates on the Dirac procedure to quantize the field variables, 
arriving at the creation and annihilation operators (i.e., second quantiz- 
ation). Section 4 gives the conclusions and a discussion of the results, 
mentioning canonical generalizations to our problem. 2 

2. STATEMENT OF THE PROBLEM: THE ELECTRON-PHONON 
LAGRANGIAN 

We will closely follow Haken's arguments (see Figure 1 for definition 
of the field variables). The procedure to quantize this problem is as follows: 

(a) Form the equations of motion. 
(b) Form the Lagrangian whose Lagrangian equation will lead back 

to the equations of motion. 
(c) Use the Dirac formalism to find the Hamiltonian and the remaining 

conserved quantities. 
(d) Quantize. 
(e) Expand with respect to eigenfunctions in order to obtain the 

creation and annihilation operators. 

We will study steps (a) and (b) in this section, leaving (c)-(e) for 
Section 3. 

/For more light on this, see J~nica de la Torre et al. (1977). It is natural to include the 
electromagnetic field in the way described by Chela-Flores et al. (1988). 
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Singular Lagrangian for the Polaron 
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Interact ion between a poin t  mass  and a string. The displacement  q(x, t) of  a string 
as a funct ion of  posi t ion x at time t. [Taken f rom Haken (1976).] 

The equations of  motion of a vibrating string free from external forces 
is given by 

pq(x, t ) -  02q'v t ) = 0  (1) 
s Ox--- 7 (~, 

where p is the mass density, q is the transverse displacement at the position 
x and time t, and s is the tension of the string. 

Now the mass m will pull the string down with a force density 

F = -GtO*(x)4,(x) (2) 

where G = mg, m is the mass of the particle, and g is the acceleration of 
gravity. In consequence, the equation of  motion for the forced vibrating 
string is 

02q 
pq(x, t ) - - S ~ x  2 (X, t )=-G~*(x )~b(x )  (3) 

The interaction between the string and the electron implies that the equations 
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of  motion for the electron are 

= + Gq(x, t)~b(x, t) (4a) ih~ 2m Ox 2 

ih(b*= ~m Ox 2 Gq(x, t)~b*(x, t) (4b) 

Equations (3)-(4) are the equations of motion for the fields q(x, t) and 
@(x, t). It is an easy matter to convince oneself that the Lagrangian density 
which reproduces the equations of motion (3) and (4) is 

L :  f ~(x) dx (5) 

with ~,  the Lagrangian density, given by 

(;t h~ +Tx ~ e(x, t) ~(x)=~b*(x,t) ih +2m 

+l[p((l(X't)2)-s(Oq(x't)2)] \Ox (6) 

We will show later that G is related to the electron-phonon coupling 
constant y. We can immediately see that the Lagrangian density [equation 
(6)] is linear in the "velocities" ~. In consequence, we have a singular 
Lagrangian to which the Dirac formalism must be applied. This we do in 
the following section. 

3. DIRAC TREATMENT OF THE SINGULAR LAGRANGIAN 

From the Lagrangian density we can evaluate the canonical momentum 
densities associated with the fields. They are 

a ~  
7r~ = -  = ih~b* (7a) a~ 

0 ~  
* - 0 (7b) ~ - a ~ *  

a ~  
7rq = ~ = pq (7c) 

From equations (7a) and (7b), we observe that the ~'s and ~r's are related 
(phase space constraints). We do not have a way to obtain the ~'s in terms 
of  the ~r's. The Lagrangian is singular since the determinant of  the 3 x 3 
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field matrix 0 2 ~ / O ~ A  Ode) B (A, B = 1, 2, 3 and ~bl = 0, ~b2 = 0", ~13 ~ -  q) is zero. 
Then, we have two primary constraints: 

f , (x) = ~r, o - ih@* 20  (8a) 

fn (x )  = ~r~,-*-0 (8b) 

where ~ means weak equality (Dirac, 1964). 
To find the secondary constraints, we have to use the consistency 

equations for the primary constraints. They are (Dirac, 1964; Franke and 
Kfilnay, 1970; K~ilnay and Ruggeri, 1972; Kfilnay, 1973) 

{fa(X), H}_+ Y, d3x ' {fA(x),fB(x')}+UB(X')~-0 (9) 
B = I o  

with A = I, II. Doing the algebra, we find 

h 2 
i hU,=-  V20(x, t)+Gq(x, t)O(x, t) (10a) 

2m 

h 2 
ihUn = V20*(x, t ) -  Gq(x, t)O*(x, t) (10b) 

2m 

Equations (10a) and (10b) fix the Lagrange multipliers and they do not 
produce any additional constraints. Equations (10) are equivalent to 
equations (4). Next, we evaluate the matrix CAB(X, X') given by 

-/- t CAB(X, X ) = { f ~ ( x ) , A ( X ' ) ) +  (11) 

where A, B = 1, 2 and (Franke and Kfilnay, 1970) 

I {fa(X),fB(x')}+= ~ dax,,[ 6fA(X) <3fB(x') +A~'-~B (12) 
c = ,  ka@c(x" )  a~+c(x") 

Then, it is an easy matter to obtain 

+ ( 0 - ih6(o-X ' ) )  (13) 
CAB(X , X') : - i h a ( x -  x') 

Equation (13) tells us that all the constraints are second class, since their 
symmetric Poisson bracket determinant is different from zero. The inverse 
of C+AB(X, X') is given by 

( 0 ( i / h ) a ( x - x ' ) )  (14) 
(c~,(x, x'))-'= (ilh)8(x-x') o 
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In order to identify the canonical variables of the theory, we must evaluate 
the symmetric Dirac bracket {F, G}*, which can be expressed as Franke 
and K~ilnay, 1970) 

{F ,G}*={F,G}+-I I  {F, fA(X)}+ 

X [C+AB(X, Xt)] -1 {fB(X'), a } +  dx dx' (15)  

The algebra produces 

i 
{O(x), O*(x')}* = - ~ 6 ( x - x ' )  (16a) 

{0*(x), O*(x')}+ = {0(x),  $(x')}*+ = 0 (16b) 

{q(x), 7rq(x)}*_ = 6(x - x') (16c) 

{q(x), q(x')}*_ = {Trq(X), ~rq(Xl)} * = 0 (16d) 

Equations (16a) and (16b) are interesting since they tell us that 0, O* are 
conjugate canonical variables. To get the quantum mechanical symmetric 
commutator, we have to assume that (Kglnay and Ruggeri, 1972) 

[ . ,  . ] •  ih{., .}* (17) 

Thus, equations (16) give 

[4~(x), ~+(x ' ) ] .  = 8 ( x - x ' )  (lga) 

[~(x) ,  r = i t ~ a ( x  - x ' )  ( lSb) 

etc. [equations (16b) and (16d)]. Now that we have the canonical variables 
of the theory, we can go to second quantization by expanding ~O, ~0 +, and 
q in terms of plane waves. Thus, 

e ikx 
O(x) = ~ ak V~ (19a) 

-ikx 
+ e  

qJ+(x) = 2  ak k ~/L (19b) 

q(x)=~(2p~L)l/2(eiWXb~+e-iW~b+~) (19c) 

+ + 
In Equations (19), ak, a k (bw, bw) are the annihilation and creation 
operators for electrons (phonons). According to our approach, the ak and 
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bw must satisfy the following relations 

[ak, a~-,]+ = 6kk' 

[ak, ak,]+ = [a~, a~-,]+ = 0 

[b~, b+,]_ = ~ww, 

[bw, bw,]-=[b +, bw,]_ + =0 
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(20a) 

(20b) 

(20c) 

(20d) 

By substituting equations (19) into the Hamiltonian operator given by 

02 

2m 2p J 

"f(~ 2 f +-2 \ Ox / dx+ Gq(x)@+(x)tp(x)dx (21) 

and we end up with 

H = Ho,et + Ho,i + Hr (22) 

where Ho,e~ is the Hamiltonian operator for the electron, Ho,t is the Hamil- 
tonian operator for the lattice, and H~ is the electron-phonon interaction 
Hamiltonian operator. Their explicit forms are (Haken, 1976, Chapter III) 

Ho,el = • eka~ak (23a) 
k 

Hol=  Z + 1 , hOw(bwb~+5) (23b) 
w 

/ 4 ,  E + * + = (ak bwak+wgw + ak+wakbwgw) (23C) 
k ,  w 

where 

h2K 2 
E k - -  (23d) 

2m 

and gw is a coupling constant, which has different expressions for polar 
crystals and for metals (Haken, 1976, Section 29). It is important to realize 
that we have written the Hamiltonian operator as in equation (21) since we 
decided to work with the Dirac brackets [equation (15)] and, at this level, 
the constraints become strong equations (Galvao and Lemos, 1988). 

Also, having the Lagrangian, it is a straightforward matter to obtain 
the remaining conserved quantities. The stress-energy tensor is given by 
(Goldstein, 1981, Chapter 12) 

T~o. = "qp,. - 5f6~,. (24) 
OUp.v 
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with r/1 = ~b, v2 = 0",  and/'3 ~--" q. Doing the algebra, we obtain for the energy 
density (the Too component) the following expression: 

h 2 + s  (Vq)2+ Gql~]2 (25) Too=�89 V~b 2 

Equations (21) and (25) are equivalent. The energy flux density Qi, momen- 
tum density Pi, and the stress density ~r 0 are given, respectively, by 

h ~ / �9 o0" ~b* o4,~ 
Q,=- T o , = -  ~m ~ 0 - ~ x  + ~ ]  -Sdl Oq (26a) Oxi 

Pi =- T/o = ih(O* 07~-~+ p(lO ---~q (26b) 
O X  i O X  i 

"a'~ =- T~j- 2m \ Ox~ Ox i Oxj Oxd 

Oq Oq 
s 6o~ (26c) 

Ox~ Ox~ 

As T~j = T;~ for i,j = 1, 2, 3, we can construct the angular momentum density 
d/t U (the moment of momentum) which is conserved. Thus, 

~~ Ox, Oxj/ (27) 

4. CONCLUSIONS AND DISCUSSION 

We have studied a singular Lagrangian density suitable for describing 
the electron-phonon interaction. Because our Lagrangian is singular, the 
Dirac formalism has been applied to it to identify the canonical variables. 
The use of the Dirac bracket has allowed us to recover the known commuta- 
tion and/or  anticommutation relations. After completing this stage, we 
go to a second quantization and our claim that the Lagrangian describes 
the electron-phonon interaction becomes transparent under plane wave 
expansion (Section 3). 

It is important to emphasize that the addition of a total time derivative 
to our Lagrangian does not produce different results at the quantization 
level. For example, adding ( - i f i / 2 ) (00*+  0~*) to equation (6) produces 
all our constraints are second class, i.e., we obtain that C~R(X, X') is still 
given by equation (13). These results are different from those found by 
K~lnay and Ruggeri (1972) and K~lnay (1973). The main reason they 
obtained conflicting results at the quantization level is because they did not 
use Grassmann variables (Senjanovic, 1976; Negele and Orland, 1988, 
especially Section 1.5) even at the classical level. Tello-Llanos (1984) shows, 
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for the case of boson variables, that Dirac's generalized mechanics is gauge 
invariant. 

The inclusion of  the electromagnetic field can be done by requiring 
that ihVo (ihV+e.4/c). Also, we can add the electromagnetic invariant 
(1/87r) F~F ~, where F is the usual electromagnetic tensor. In this way, 
for the stationary phase, this contribution becomes (1/8~-)(Vx,4) 2, which 
is invariant under the gauge transformation A ~  ,4+  1/cVd~, where qb is an 
arbitrary field. Work along these lines is in progress. Needless to say, the 
electromagnetic field is a boson field (Jfinica de la Torre et aL, 1977). 
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